
Modeling the knowledge contents of CBR systems
Agnar Aamodt

Norwegian University of Science and Technology,
Dept. of Computer and Information Science

N-7491, Trondheim, Norway

Abstract

Recent work within the CBR community has studied more
systematic means of interrelating different types of
domain knowledge, tasks, and methods for building and
maintaining CBR systems. This paper reviews work from
the knowledge acquisition community, targeted at
methodologies and tools for analysis, modeling, and
maintenance of knowledge components. It is argued that
the knowledge level is the appropriate level for describing
the behavior of an intended CBR system, and for
identifying the contents of its knowledge components. A
framework is outlined in which a knowledge-level
modeling methodology is adapted for the modeling and
maintenance of CBR knowledge contents.

1. Introduction
Over the years the CBR community have developed a
variety of methods, aimed to address different
application tasks, and making use of different types of
knowledge. Knowledge needed for the CBR process as
such has been identified in terms of four knowledge
containers (Richter, 1995). These are the vocabulary
that describes the domain, the set of cases described in
this vocabulary, the similarity assessment knowledge,
and the solution transformation knowledge (i.e.
adaptation knowledge). Extensions to this set has
subsequently been suggested, in particular the addition
of a separate container for maintenance knowledge
(Patterson, 2001). Many CBR methods rely on a body
of general domain knowledge to assist the CBR steps,
its primary role being to produce explanations and
justifications as part of the reasoning (e.g. Porter,
1990; Leake, 1993; Aamodt, 1994). When this type of
knowledge becomes a substantial part of a system’s
knowledge, modeling and maintaining it call for
methods from other areas of AI than those specific to
CBR. In addition, current case-based systems are to an
increasing degree addressing problems that need richer
case contents and more complex case structures (Aha
and Wettscherek, 1997; Aha, 2000). This calls for

more systematic methods for case base knowledge
analysis and modeling, i.e. methods beyond the ad-hoc
approaches typical of today.

The knowledge acquisition community has over the
last decade had a strong focus on frameworks,
methodologies, and tools for characterizing various
types of knowledge, their interrelations and their roles
in problem solving and learning. A recent trend has
been to develop reusable libraries of generic
knowledge modeling components, in order to speed up
knowledge base development and maintenance, and to
facilitate sharing of knowledge bases (Breuker and
Van de Velde, 1994; Motta et.al., 1999). Recent work
within the CBR community has also looked more
deeply into systematic methodologies and support
tools for identifying, analyzing, designing, and
maintaining the constituents of a CBR system. These
research efforts have either taken a systems-structural,
implementation-directed or tool-driven perspective
(Smyth and Cunningham, 1997; Leake and Wilson,
1998; Leake and Wilson, 1999), or a more generic
software architecture or systems development
perspective (Plaza and Arcos, 2000; Bergmann et.al.,
1997). The work outlined in this paper provides a
complementary view by focusing on the analysis and
description of knowledge contents rather than
organizational, implementational or architectural
issues. This is done by taking a knowledge-level view
of the modeling and maintenance process, leaning on
results from parts of the knowledge acquisition
community, and trying to see how it may can be
applicable to CBR systems. Past research within the
CBR community on applying knowledge-level
analysis to the CBR process (e.g.. Armengol and
Plaza, 1993, Althoff and Aamodt, 1996, Fuchs and
Mille, 1999) is also related to the work reported here,
although it had a different goal than CBR systems
modeling and maintenance.

The paper first summarizes the knowledge-level
account, and how this has lead to a set of knowledgeCopyright © 2001 Agnar Aamodt



modeling methods for knowledge-based systems. On
that basis, steps towards a methodology that takes a
knowledge-level approach to CBR knowledge
container development and maintenance are suggested.
The term “knowledge” – as used in this paper – refers
to all types of explicitly represented structures on the
basis of which a system is able to perform reasoning.
In general there are three main types of knowledge we
will consider, as elaborated in the next section: Task
knowledge, Method knowledge, and Domain
knowledge.

2. Knowledge-level modeling
Research within the knowledge acquisition community
has produced several methodologies and techniques
for describing knowledge at a conceptual,
implementation-independent level. Influential
examples are the CommonKADS methodology
(Breuker and Van de Velde, 1994), the Components of
Expertise framework (Steels, 1990), the Generic Tasks
approach (Chandrasekaran, 1992), Role Limiting
Methods (McDermott, 1988), and the Method-to-Task
approach underlying the PROTEGE systems (Musen,
1989). Work in order to unify several of these
methodologies has been a focus of several groups, as
exemplified by the multiple perspective approach of
the KREST methodology (Steels, 1993), and by the
generality strived for in CommonKADS (Wielinga et.
al., 1992). All these approaches have a common
feature, they view knowledge modeling - at least partly
- from what is claimed to be a knowledge-level
perspective. However, the term knowledge level has
become used is slightly different meanings and needs
an elaboration.

In Newell’s paper (Newell, 1982) the knowledge level
was proposed as a distinct level of description of
computer systems, defined to lie above the level of
data structures and programming languages. The latter
was referred to as the symbol level. In Newell’s
framework, each computer system level has a medium
of expression, identifying what is being processed at
that level. Each level further has a behavioral law,
which determines how the processing is done, and
which enables explanation and prediction of system
behavior at that level. The knowledge level has
knowledge, in terms of goals and means to obtain
them, as its medium, and what is called the ”principle
of rationality”, as its behavioral law. A system is
described at the knowledge level as an intelligent agent
with its own goals and with knowledge of how to
achieve its goals. The principle of rationality states that
an agent always will use its knowledge in a way that
ensures the achievement of its goals - provided the
agent has the knowledge needed. At the symbol level,
the medium is symbols (data structures and programs),

and the behavioral law is sequential interpretation of
program procedures.

The knowledge level enables a system (existing or
anticipated) to be described in terms of what it does
and why it wants to do it, completely independent of
implementational constraints. Hence it is a level
applicable to any agent to which it makes sense to
ascribe knowledge and rationality (e.g. humans, some
animals, some computer systems, ...). The problem
with using the knowledge level in this sense, for the
modeling and design of computer systems, is that it
has no a priori structure. Hence, the knowledge level in
this sense cannot be used directly to analyze and
structure knowledge. Further, the principle of
rationality assumes an ideal rational agent, not
bounded by physical or temporal constraints. The
knowledge level in its ”pure” form is therefore not
particularly useful for structuring a knowledge
modeling effort. This has lead to modifications of the
original knowledge level notion defined by Newell,
into a more operational notion of the knowledge level.
This may be viewed as moving the knowledge level
slightly in the direction of the symbol level. Terms
used to characterize this “intermediate level” include
the "knowledge use level" (Steels, 1990), and
"knowledge level architecture" (Sticklen, 1989). It also
includes introducing the notion of "tractable
rationality" (Van de Velde, 1993), as a means to deal
with the pragmatics of real world situations as opposed
to Newell’s ideal, unbounded rationality. So, when
referring to knowledge-level architectures,
methodologies, approaches, etc. within the knowledge
acquisition and modeling community, it is this kind of
slightly operationalized specialization of Newell’s
original idea that is meant.
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Figure 1: Knowledge perspectives

Given this refined notion of the knowledge level, a
consensus seems to have been established that
knowledge should be grouped into three main types, or
viewed from three perspectives: Task knowledge,
Method knowledge, and Domain knowledge (see figure
1). Task knowledge models what to do, usually in a
task-subtask hierarchy. Tasks are tightly connected to



goals, and sometimes used interchangeably. A task is
defined by the goals that a system tries to achieve.
Method knowledge describes how to do it, i.e. a
method is a means to accomplish a task (e.g. to solve a
problem). Domain knowledge is the knowledge about
the world that a method needs to accomplish its task.
Examples are facts, heuristics, causal relationships,
multi-relational models, and – of course – specific
cases. The term “domain knowledge” is not a
particularly good term, however, since task- and
method knowledge often is domain specific as well. It
is hard to find a better term to indicate this type of
knowledge, however, although 'object knowledge'
'application knowledge' and just 'models' have been
proposed. We will stick to domain knowledge, but
bear in mind that the other knowledge types are not
necessarily domain independent. Although the in-
principle decomposition at the top level into these
three knowledge types is agreed upon, the naming of
them, and their subdivision and interrelationships are
to a large degree what characterizes each specific
knowledge-level modeling methodology

By the early nineties, some methodologies and tools
had been developed to support this type of knowledge
level modeling. They range from relatively general
toolboxes to strongly methodology-driven work-
benches, usually including libraries of reusable
modeling components. Some of these approaches are
aimed at knowledge level modeling only  (e.g. Breuker
and Van de Velde, 1994), while others attempt to
provide a bridge to a symbol-level realization – i.e.
implementation - as well (e.g. Klinker et al., 1991;
Linster, 1992; Steels, 1993). At the basis of several of
these methodologies is the view of problem solving as
a model construction process.

3. The model construction view of problem solving.
The model construction view states that problem
solving is the process of moving from a model instance
that describes a problem to be solved, pushing this
model through a set of problem solving states, finally
ending with a version of the initial model instance that
also contains the solution to the problem (Van de
Velde, 1993; Clancey 1992). Model instances,
sometimes referred to as case-models, are state
descriptions that contain information about the current
state of the world. This also includes the current task
that has to be – or is being - accomplished. The role of
domain knowledge is to enlarge the case-model,
controlled by a suitable method for the task/subtask in
question. Characteristic for the view of problem
solving as model construction is that the entire case
model is considered at each problem solving step. This
is different from searching for just a particular value
(i.e. a solution). This view therefore fits very well with

the CBR problem solving cycle, where the initial case
(the problem to be solved) is an instantiation of the
generic case model that becomes enlarged through
influence from retrieved cases and adaptation
knowledge until it contains a solution that satisfies the
initial task requirements. This is also advocated by the
framework of Plaza and Arcos (2000). Retainment sets
up an additional task, which takes the final state of the
problem solving case, and constructs a case to be
integrated into the case base. Learning can also be
viewed as a type of problem solving, i.e. solving a
learning problem. This unified view to problem
solving and learning also opens up for tightly
integrated problem solving and learning architectures
(Van de Velde and Aamodt, 1992) where CBR would
be one type of method. Adopting the model
construction view of problem solving, justified by its
easy match with CBR problem solving, opens up for
making use of knowledge modeling and maintenance
methods that are based on this view.

4. The Components of Expertise framework
adapted for CBR
An example of a knowledge level modeling
framework, that also incorporates a model-
construction view as described above, is Components
of Expertise (Steels 1990, Steels 1993). This was one
of the methodologies that contributed to the
CommonKADS methodology. We have taken initial
steps in adapting it for CBR. To get an understanding
of the generality of the framework, it is presented in a
general way, referring to specific CBR processes as
comments and annotations.

The three main types of knowledge (see Figure 1) are
in this framework referred to as tasks, methods, and
models. So, domain knowledge is referred to as
models. There are two types of models: Domain
models make up the contents of the knowledge base,
and consists of all knowledge that is part of long term
memory. This means that general domain knowledge
as well as past cases will be contained in domain
models. (Domain knowledge in the form of past cases
was not an explicit  part of the Components of
Expertise framework as defined by Steels). Case
models, on the other hand, are problem solving state
descriptions and part of the systems working memory,
as described in section 3. Tasks and models are
structured into Task Decompositions and Model
Dependency Diagrams, respectively. Methods that
impose control over task are described in Control
Diagrams. See Figure 2.

A task decomposition relates a task to its subtasks in a
part-subpart hierarchy. For example, a task may be to
diagnose a car, with the subtasks to observe symptoms,



to decide tests, to perform tests, to identify likely
faults, etc. The leaf nodes in the hierarchy are tasks
that are solved without further decomposition. A task
decomposition models the task-subtask relation only, it
does not say anything about interdependencies
between tasks. This is handled by the control methods.

Model dependency diagrams are used to inter-relate
the various domain knowledge types that are needed to
construct a new case model on the basis of existing

case models. As shown in Figure 2 (middle part), a
case model is constructed from information provided
by the initial case description (case-model-0), possibly
additional information by the user, and knowledge
from the domain model (domain-model-1). This could
for example be a partial model that infers additional
problem descriptors. The resulting case model after the
first step (case-model-1) becomes input to a
subsequent model construction activity (lower circle),
which takes another domain model (domain-model-2),

domain
model-1

user
domain
model-2

case
model-1

case
model-2

model construction
activity

Task Decomposition Model Dependency Diagram Control Diagram

Methods:
• Decompose tasks
• Execute tasks
• Assign tasks to model
   construction activities
• Impose control over tasks

Task-1 Task-2 Task-3
c1

c2

 case
 model-0

Figure 2:  Components of Expertise diagrams

e.g. the case base and supporting general knowledge,
and constructs a second case model (case-model-2, e.g.
a retrieved case). Model dependency diagrams are
organized into abstraction hierarchies. By expanding a
model construction activity, model dependencies at a
more detailed level are described. Model construction
activities will typically map to subtasks in the task
decomposition.

Methods are applied to tasks in order to accomplish
them. There are four types of methods: A task
decomposition method returns a decomposition of the
task it is applied to, a task execution method executes a
task directly without further decomposition. As
mentioned, control methods controls the sequence of
subtask execution, based on their dependencies. The
final type of method maps tasks to model construction
activities (see Figure 2).

The power of using the three perspectives (tasks,
methods, and models) for knowledge level modeling
lies in the interaction between the perspectives, and the
constraints they impose on each other. For example, a
task may be decomposed in two principle ways: By a
method-oriented decomposition, or by a model-
oriented decomposition. In the former, the type of task

decomposition method chosen for the task determines
subtasks of a task. For example, a common problem
solving method called ”cover-and-differentiate” will
decompose a task into two sets of subtasks: One which
will try to find solutions that cover for the observations
made, and another that tries to differentiate between
possible solutions in order to find the best one. The
method ”hierarchical design” will decompose a design
task into a set of course-grained components, which in
turn are decomposed into more detailed components,
etc. In a model-oriented decomposition, the subtasks of
a task are chosen according to what type of domain-
models they relate to and the type of case-models they
produce. An example would be to decompose a task
into a subtask that handles the input of component
information, another that deals with process
information, etc. The framework opens up for, for
example, interrelating cases that cover several
subtasks, and to develop problem solving methods and
domain models used in retrieval and adaptation suited
to each subtask/subcase. A suitable way to integrate
knowledge-level and symbol-level modeling will have
to be a necessary to be part of the framework (Aamodt,
1995; Winnem, 1996).



5. Beyond the initial steps
Several issues on the current research agenda of the
knowledge modeling community are regarded of
particular relevance to CBR knowledge modeling, and
form a basis for continued research in our group. First,
a lot of work is currently being put into the definition
and reuse of ontologies, for domain knowledge as well
as task and method knowledge (Gennari et. al., 1994;
Schreiber et. al., 1995; Fensel et. al., 2000). This will
enable the knowledge content of the case vocabulary
container, as well as supporting general domain
knowledge, to be more easily identified and related to
task and method ontologies in a systematic way. In
turn this should facilitate the sharing of knowledge for
CBR systems development (Bergmann et. al., 1997).
Second, the understanding of the role of problem
solving methods, and their interrelations with tasks and
domain knowledge has increased recently (Aamodt et
al., 1992; Benjamins and Pierret-Golbreich, 1996;
Motta and Zdrahal, 1998). The explicit modeling of
this knowledge type will help in defining the contents
of the retrieval and adaptation knowledge containers,
and their relation to the domain vocabulary. Finally the
case knowledge as such will have to be modeled by
taking all the three knowledge types into account, and
the knowledge-level analysis will help identifying the
relationships between the different part of the case
contents.

For CBR, an issue that needs to be looked into in
parallel with further development of the framework
outlined, is the integration of the knowledge level
modeling approach to symbol level design and
implementation. Ongoing work in our group is relating
the knowledge level framework outlined here to the
more symbol-level design framework of Leake and
Wilson (1998), and to the development of visualization
tools for knowledge-level conceptual modeling as well
as symbol-level knowledge representation. Although
the framework presented is targeted to the modeling
and maintenance of application-related tasks, methods
and domain models, the knowledge-level framework
also enables the explicit modeling of introspective
tasks (Ram and Leake, 1995) and their accompanying
reasoning methods and reasoning domain models.

6. Conclusion
Developing and maintaining the contents for CBR
containers, and accompanying method and tasks, can
benefit from adopting a knowledge-level modeling
approach based on state-of-the-art research within the
knowledge acquisition and modeling area. The initial
framework suggested shows mapping to CBR-specific
problems, and points out directions for further
research.
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